The C++ Standards Committee:
Progress & Plans

February 17, 2004

Walter E. Brown Marc F. Paterno
Computing Division

3¢ Fermi National Accelerator Laboratory

Motivation for this talk

» C++ has become the /ingua franca
for HEP computer programming:

But the scientific community is still under-
represented in the C++ standardization effort

Fermilab joined the standards committee in 2000:

« FNAL has full voting privileges
« We are FNAL's designated representatives

» Our goal is to keep you informed:
Share our experiences and insights
Communicate developments re future C++
Solicit feedback for the committee

Overview Je

» Background information:

National & international umbrella organizations:
 Internal committee structure & procedures
« Formal and informal working arrangements

C++ standardization timeline

Work completed since: DRs, TC1, TR

» Ongoing work in language & library evolution:
DRs and TR ...
... as prelude to C++0x

1ISO JTC1-SC22/WG21

+ ISO: International Standards Organization

JTC1: Joint Technical Committee
for Information Technology

SC22: Subcommittee for
Programming Languages,

their Environments,
and System Software Interfaces

WG21: Working Group for C++
» ISO membership:

Open only to national standards bodies ...
... of which ANSI is one

ANSI NCITS/J16 3

» ANSI: American National Standards Institute

NCITS: National Committee for
Information Technology Standards
(formerly: Accredited Standards Committee X3)

J16: Technical Committee for

Programming Language C++
» Fermilab is a voting member of J16

Working arrangements 2%

» All meetings of WG21 and]16 are co-located:
2x/year; one in North America, one international

» All formal votes are taken twice:
J16 first, with only its (U.S.) members voting
WG21 second, with only national bodies voting

« Informal consensus is reached
before formal motions are brought to a vote:

Hence formal motions generally pass with no
significant opposition

All members share a strong commitment

to cooperation

Internal organization

» All meeting attendees work closely together
for the common goal:

J16 and WG21
Voting “members” and non-voting “observers”
Famous/notorious and unknowns

Four “working groups” (subcommittees):
Core language (25 pre-9/11; lately ~15)
Library (30+ pre-9/11; lately ~20)
Performance (<10 and diminishing)
Evolution (~15 and growing)

C++ standardization timeline 2%

+ ~1990: beginning of standardization effort

'95, '96: C++ Draft Standards issued for
public comment; concerns addressed

'97: Final C++ Standard approved
'98: ISO balloting completed and ratified;

14882:1998 (informally: C++98) issued

“1997-2000 was a deliberate period of calm to
enhance stability” (B. Stroustrup)

1998-2003 accomplishments

» DRs (Defect Reports):

Apparent error, inconsistency, ambiguity, or
omission in the published final Standard

Failure of wording to meet Committee’s intent
» TC (Technical Corrigendum) #1:

Collection of corrections to accepted DRs
Merged with Standard, yielding ISO 14882:2003
BSI authorized book publication (Wiley, 2003)

» TR (Technical Report) on C++ Performance:
ISO balloting now in progress
Approval, issuance expected shortly

Sample Defect Report

* Library Issue 69:
“Must elements of a vector be contiguous?”
Affects Clause 23.2.4

Status: DR (an accepted defect with an agreed
resolution); part of TC1

Resolution: ‘The elements of a vector are stored
contiguously...”

+ Few issues were/are this straightforward

2001 to date F

« 2001: Directions for C++0x seeded
committee discussion re Standard C++ future

LWG began work toward a
Technical Report on C++ Library Extensions

Full Committee to vote on final draft in late 2004

+ 2002: formally decided to revise the Standard

ISO requirement: must decide every 5 years
to ratify, amend, or withdraw

+ All work now effectively aimed at C+40x:
Incorporate post-TC1 corrections & the LWG TR
Many additional proposals also being evaluated

Suggested criteria for C++0x 4+

» General principles:
Minimize incompatibilities with C++98 and C99
Keep to the zero-overhead principle
Maintain or increase type safety
Minimize “implementation-defined” & “undefined”

» Core language goals:
Make C++ easier to teach and learn

Make rules more general and uniform

» Library goals:
Improve support for generic programming & other
programming styles
Improve support for application areas

Kinds of issues being addressed 3

Performance

Selected specialized domain support
Generalization, extension of current practice
Component interoperability

Coding convenience

Improvements in type-safety, -correctness,
and the type system itself

Features under consideration (partial list) 3%

Core Language Standard Library
Dynamic libraries Random numbers
Move semantics Mathematical special functions
Compile-time reflection Shared-owner smart pointers
Concepts Enhanced function binder
Static assertions Unordered (hashed) containers

decltype and auto Regular expressions

Forwarding constructors Polymorphic fctn. obj. wrappers
Local classes as template parm's | Tuple types

User-defined literals Type traits

Generalized initializer lists Member pointer adaptors

Null pointer constant Reference wrappers

Template aliases Function result type traits

Issue: performance 2

Representative proposal: move semantics

Observation: copying an object can be
expensive (e.g., deep copies of linked storage
structures)

Basic idea: reduce cost, when possible, by

moving instead of copying

Typically possible when the source object:

Is disposable after the copy, or ...
Is about to get a new value after the copy

Move semantics (courtesy H. Hinnant) =

« Moveis the ability to cheaply transfer the value of an
object from a source to a target, with no regard for
the value of the source after the move:

target source

initial state

source’s value
left unchanged

final state

initial state

source’s value of

final '
al state no more interest

Move-aware std::vector 2e

* std::vector can make good use of move semantics
when creating a new internal buffer:

old buffer old buffer

Vbl

new buffer new buffer

Elements are moved (not copied) to the new buffer

Since the entire old buffer is about to be destroyed,
we don't care about its elements’ post-move values

And further ... 2%

* std::vector can make good use of move semantics
when inserting (or erasing) within a single buffer:

Elements are moved

(not copied) within the
buffer to create a “hole” for
the new element

Since each “hole” soon
receives a new value,
we don't care about its
post-move value

Move semantics: timing examples

* vector<string>::erase

std::string s(20,' ');
std::vector<std::string> v(100, s);
clock_t t = clock();

v.erase(v.begin()); } Move semantics 14 times faster!
t = clock()-t;

e vector<multiset<string> >:.erase

std::string s(20,' ');
std::multiset<std::string> ms;
for (inti=0; i<100; ++l)

ms.insert(s);
std::vector<std::multiset<std::string>> v(100, ms);
clock_t t = clock();

v.erase(v.begin()); } Move semantics 200 times faster!
t = clock()-t;

Issue: specialized domain support =+

+ Representative proposals: random numbers
and mathematical special functions

 Both of wide utility to scientific communities

* Current library support is minimal (rand()
and trig functions), clearly inadequate for our

applications

» Involves first significant enhancement to
<math.h> in ~30 years

Features of random numbers proposal =

 Design is based on a flexible and extensible
framework:
It's easy to add user-defined distributions

Any such added distributions will work seamlessly
with existing components

» Includes engines and distributions important
to our community:

Engines’ outputs are guaranteed to be portable
and reproducible

Distributions’ outputs are guaranteed to be
reproducible

Summary of random numbers proposal

Engines

Distributions

Linear congruential

Uniform integer

Mersenne twister

Uniform floating-point

Subtract with carry

Binomial

Discard block

Exponential

Xor combine

Normal

Gamma

Poisson

Geometric

Bernoulli

Random numbers proposal status

Fermilab hosted the proposal’'s author for a
week in 2002 and provided design criteria
and technical guidance

Accepted for Library Technical Report
Boost provides one near-implemention

At least one vendor has implemented and is
planning to ship

We are proposing additional distributions for
C++0x

Distributions approved and proposed

 “Uniform” family: * “Normal” family:
integer uniform, Normal, lognormal,
floating-point x?2, Breit-Wigner,
uniform Fisher's F, Student’s ¢

+ “Bernoulli” family: + “Sampling” family:

Bernoulli, binomial, Histogram,
geometric, negative cumulative
binomial distribution function

» “Poisson” family: + “Addams” family:

Poisson, exponential, (just kidding; sorry)
gamma, Weibull,
DU NEREINE

Summary of special functions proposal -

Bessel/Neumann (6) Elliptic integrals (6)
Legendre (2) Beta

Spherical harmonics Exponential integral
Hermite Riemann zeta
_aguerre (2) Error (2)
Hypergeometric (2) Gamma

Why standardize special functions?

» Quality and reliability:
Professional attention to important details often
overlooked by typical application programmers:

 Lack of generality when a specific problem is at hand
 Insufficient attention to details: corner cases, errors, ...

» Portability and re-use:

Focus on problems rather than on issues related
to infrastructure or platform dependency

» Significance:
Greatly enhance and promote usage among

computing communities in the scientific,
engineering, and mathematical disciplines

Special functions proposal status =+

» Initial reaction: reluctance by vendors, largely
due to amount of work and perceived lack of
general user interest

» Accepted for Library Technical Report as
result of (ahem) our lobbying efforts

+ Implementation by at least one vendor is well
under way

« A bonus: also under active consideration for
the C programming language

Issue: component interoperability 3

+ Representative proposal: shared-ownership
smart (resource-managing) pointers

* No pointer type having shared-ownership
semantics is uniformly available today:

So we all reinvent and produce unique versions,

a situation much like the days before std::string
Treated in depth by numerous textbooks, yet ...

... correct smart-pointer implementation (even by
experts) is known to be “exceedingly difficult” ...

... and especially so when exceptions are taken
into account

Example of a subtlety

class C;
typedef C* C_ptr;
void f(C_ptr, int);

int g();

void oops() {
C ptr p(newC);
f(p, 9()); // leaks memory ifg() throws ...
delete p; /... since we’ll never get here

}

How shared_ptr<> helps

class C;
typedef shared_ptr<C> C_ptr;
void f(C_ptr, int);

int g();

void okay() {
C ptr p(newC);
f(p, 9()); // no leak, even if g() throws
// bonus: no client code need for explicit deletion

}

In brief F

* Pointers naturally appear in function and
library interfaces

» The only managing pointer in C++ today is
std::auto_ptr<> but it has no shared
ownership semantics

+ Key insight: All information needed for proper
managed object destruction is captured when
a smart pointer is initialized

Features/benefits of shared_ptr<> &

+ Allows programmers to avoid pitfalls of:
Manual memory resource management
Memory access via dangling (invalid) pointer

» Provides:
Far clearer expression of programmer intent

Safer pointer parameter passage

» Has other uses and features:
Standard container contents (unlike auto_ptr<>)
Companion non-sharing observer weak_ptr<>

Handle-body and other pointer-based patterns
and idioms

Issues: convenience, generalization -

+ Representative proposal: enhanced function
binder

+ Generalizes, extends current standard library
adapters: bind1st(), bind2nd(), ptr_fun(),
mem_fun(), mem_fun_ref()

Applicable to functions, member functions, and
function objects alike

Independent of arity

Well-suited for in-place use in conjunction with
standard algorithms; often avoid need to code
numerous out-of-line custom functions

Basics of bind F

int g(inta,intb) { return a+b; }

bind(g, 11, 12) // a niladic function object
bind(g,11,12) () // same as g(11,12)

bind(g,_1,16) (x) // equivalent to g(x, 16)
bind2nd(ptr_fun(g), 16)(x) /7 g(x,16)

int h(inta,intb,intc) { return at+b+c; }

bind(h, _3,_2, 1)(x,y,z) /h(zy,x)
bind(h, 3, 3, 3)(x,y,z) /#h(z,22)

Composition via bind

class Track {

double pT() const;
double dca() const;

b
std::vector< Track > v(...);

std:sort(v.begin(), v.end()
, bind(less<double> ()
, bind(& Track::pT, _1)
, bind(& Track::pT, _2)
) ;

“And now for something ... different” 3E

* Previous discussion focus:
Concrete proposals already accepted
Now being tweaked for final wording, etc.

 But there are many other ideas in various
stages of discussion, development, drafting

+ Of particular interest to our community:
Dynamic libraries (.so, .dll)
Reflection

Dynamic libraries 2%

+ “Components gathered together by the
operating system when the application runs”

+ Today “an application that uses dynamic
libraries cannot be written entirely in
standard C++"

“The terminology, the compiler and linker
mechanisms, and the semantic rules for
dynamic libraries vary widely from system to
system”

Important scenarios for dynamic libraries 3=

» Library code that is provided via one or more
dynamic libraries:
The C++ standard library
A third-party library
» Application code that uses one or more

dynamic libraries:
All known at (static) link time
Explicitly loaded/unloaded at run time
Mixture of both?

Runtime linkage support issues 3=

+ Concepts and nomenclature not in the current
Standard:

“Linkage unit,” “linkage unit iaentifier,”
“shared linkage,” “tentative resolution,” ...

 Runtime linkage impact on:

Program model & phases of translation
ODR (One-Definition Rule)

Type identification and other meta-data
Construction/destruction of static objects

» Declaration syntax describing runtime linkage
» Syntax/semantics of loadable libraries

Reflection

+ Entities reflect when they examine
themselves:

Can happen at compile time or at run time
Often expressed via a “meta-object protocol”

» Classical application is serialization for

persistence:
Describing the object in some agnostic format
Many difficult issues: pointers, portability, ...
Lots of library-based attempts, but limited success
Complete solution needs language support

Limited standardization activity to date

» Why?
Too many items competing for attention and
resources

No agreed-upon “prior art” on which to standardize
+ Research efforts under way:

EDG-based “Metacode” project (D. Vandevoorde)
gcc-based “Compile Time Reflection for C++"
(G. Dos Reis, J. Maddock, et al.)
« We are writing a paper to try to spur
Committee interest/activity

Sample of what else Is on the horizon -

« Computer arithmetic has historically been
largely based on binary representation

* A recently-promulgated ISO standard
promotes the cause of decimal arithmetic:

Primarily motivated by commercial interests, but

also of interest to the scientific world

Vendor commitment to new hardware in support
of decimal arithmetic

« Long-term view suggests:
Binary arithmetic will stagnate/fossilize, and
Decimal arithmetic will dominate numeric types

Moving forward on decimal arithmetic

» C++ is exploring language and library
support for decimal arithmetic:

Historically unprecedented cooperation with
ANSI and ISO Standards Committees for
Programming Language C

Many thorny problems need to be addressed

» Sample of agenda:
New native decimal types

Supporting functionality (e.g., operators, library
functions, I/0, ...)

Interoperability with binary data

Summary -

» C++ continues to be of interest to Fermilab:
Expressiveness
Performance
Significant community experience

» C++ is being enhanced, along many axes, in

directions of substantive interest to us:
We've been actively nudging it in these directions

» Standard components benefit us all:
Require less in-house development/maintenance
Enhance efforts to share code

Allow us to focus on physics, not infrastructure
44

References

N1451: “A Case for Template Aliasing”

N1452: “A Proposal to Add an Extensible
Random Number Facility ... (Revision 2)’

N1542: “A Proposal to Add Mathematical
Special Functions ... (Version 3)’

N1547: “Comments on the Initialization of
Random Engines”

N1588: “On Random-Number Distributions ...”
N1611: “Implicitly-Callable Functions ...”
Additional information

The C++ Standards Committee:
Progress & Plans

February 17, 2004

Walter E. Brown Marc F. Paterno
Computing Division

3¢ Fermi National Accelerator Laboratory

